Package

scalaz

Permalink

package scalaz

Linear Supertypes
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. scalaz
  2. AnyRef
  3. Any
  1. Hide All
  2. Show all
Visibility
  1. Public
  2. All

Type Members

  1. type :<:[F[_], G[_]] = Inject[F, G]

    Permalink
  2. type :≺:[F[_], G[_]] = Inject[F, G]

    Permalink
  3. type <~[+F[_], -G[_]] = NaturalTransformation[G, F]

    Permalink
  4. type =?>[E, A] = Kleisli[Option, E, A]

    Permalink
  5. type @>[A, B] = LensFamily[A, A, B, B]

    Permalink
  6. type @?>[A, B] = PLensFamily[A, A, B, B]

    Permalink
  7. type @@[T, Tag] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  8. type Alternative[F[_]] = ApplicativePlus[F]

    Permalink
  9. type Cont[R, A] = IndexedContsT[scalaz.Id.Id, scalaz.Id.Id, R, R, A]

    Permalink
  10. type ContT[M[_], R, A] = IndexedContsT[scalaz.Id.Id, M, R, R, A]

    Permalink
  11. type Conts[W[_], R, A] = IndexedContsT[W, scalaz.Id.Id, R, R, A]

    Permalink
  12. type ContsT[W[_], M[_], R, A] = IndexedContsT[W, M, R, R, A]

    Permalink
  13. type Disjunction[+A, +B] = \/[A, B]

    Permalink
  14. type FirstMaybe[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  15. type FirstOf[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  16. type FirstOption[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  17. type GlorifiedTuple[+A, +B] = \/[A, B]

    Permalink
  18. type IMap[A, B] = ==>>[A, B]

    Permalink
  19. type IRWS[-R, W, -S1, S2, A] = IndexedReaderWriterStateT[scalaz.Id.Id, R, W, S1, S2, A]

    Permalink
  20. type IRWST[F[_], -R, W, -S1, S2, A] = IndexedReaderWriterStateT[F, R, W, S1, S2, A]

    Permalink
  21. type IndexedCont[R, O, A] = IndexedContsT[scalaz.Id.Id, scalaz.Id.Id, R, O, A]

    Permalink
  22. type IndexedContT[M[_], R, O, A] = IndexedContsT[scalaz.Id.Id, M, R, O, A]

    Permalink
  23. type IndexedConts[W[_], R, O, A] = IndexedContsT[W, scalaz.Id.Id, R, O, A]

    Permalink
  24. type IndexedReaderWriterState[-R, W, -S1, S2, A] = IndexedReaderWriterStateT[scalaz.Id.Id, R, W, S1, S2, A]

    Permalink
  25. type IndexedState[-S1, S2, A] = IndexedStateT[scalaz.Id.Id, S1, S2, A]

    Permalink
  26. type IndexedStore[I, A, B] = IndexedStoreT[scalaz.Id.Id, I, A, B]

    Permalink
  27. type LastMaybe[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  28. type LastOf[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  29. type LastOption[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  30. type Lens[A, B] = LensFamily[A, A, B, B]

    Permalink
  31. type MaxMaybe[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  32. type MaxOf[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  33. type MaxOption[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  34. type MinMaybe[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  35. type MinOf[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  36. type MinOption[A] = AnyRef { ... /* 2 definitions in type refinement */ }

    Permalink
  37. type PIndexedState[-S1, S2, A] = IndexedStateT[scalaz.Id.Id, S1, S2, Option[A]]

    Permalink
  38. type PIndexedStateT[F[_], -S1, S2, A] = IndexedStateT[F, S1, S2, Option[A]]

    Permalink
  39. type PLens[A, B] = PLensFamily[A, A, B, B]

    Permalink
  40. type PState[S, A] = IndexedStateT[scalaz.Id.Id, S, S, Option[A]]

    Permalink
  41. type PStateT[F[_], S, A] = IndexedStateT[F, S, S, Option[A]]

    Permalink
  42. type RWS[-R, W, S, A] = IndexedReaderWriterStateT[scalaz.Id.Id, R, W, S, S, A]

    Permalink
  43. type RWST[F[_], -R, W, S, A] = IndexedReaderWriterStateT[F, R, W, S, S, A]

    Permalink
  44. type Reader[E, A] = Kleisli[scalaz.Id.Id, E, A]

    Permalink
  45. type ReaderT[F[_], E, A] = Kleisli[F, E, A]

    Permalink
  46. type ReaderWriterState[-R, W, S, A] = IndexedReaderWriterStateT[scalaz.Id.Id, R, W, S, S, A]

    Permalink
  47. type ReaderWriterStateT[F[_], -R, W, S, A] = IndexedReaderWriterStateT[F, R, W, S, S, A]

    Permalink
  48. type State[S, A] = IndexedStateT[scalaz.Id.Id, S, S, A]

    Permalink
  49. type StateT[F[_], S, A] = IndexedStateT[F, S, S, A]

    Permalink
  50. type Store[A, B] = IndexedStoreT[scalaz.Id.Id, A, A, B]

    Permalink
  51. type StoreT[F[_], A, B] = IndexedStoreT[F, A, A, B]

    Permalink
  52. type Unwriter[W, A] = UnwriterT[scalaz.Id.Id, W, A]

    Permalink
  53. type ValidationNel[+E, +X] = Validation[NonEmptyList[E], X]

    Permalink
  54. type Writer[W, A] = WriterT[scalaz.Id.Id, W, A]

    Permalink
  55. type |-->[A, B] = IndexedStoreT[scalaz.Id.Id, B, B, A]

    Permalink
  56. type |>=|[G[_], F[_]] = MonadPartialOrder[G, F]

    Permalink
  57. type ~>[-F[_], +G[_]] = NaturalTransformation[F, G]

    Permalink
  58. type ~~>[-F[_, _], +G[_, _]] = BiNaturalTransformation[F, G]

    Permalink
  59. type [A, B] = \/[A, B]

    Permalink
  60. type = Any

    Permalink
  61. type = Nothing

    Permalink
  62. type Cojoin[F[_]] = Cobind[F]

    Permalink
    Annotations
    @deprecated
    Deprecated

    (Since version 7.1) Cojoin has been merged into Cobind

Value Members

  1. val IMap: ==>>.type

    Permalink
  2. val IRWS: IndexedReaderWriterState.type

    Permalink
  3. val IRWST: IndexedReaderWriterStateT.type

    Permalink
  4. val RWS: ReaderWriterState.type

    Permalink
  5. val RWST: ReaderWriterStateT.type

    Permalink
  6. implicit val idInstance: Traverse1[scalaz.Id.Id] with Each[scalaz.Id.Id] with Monad[scalaz.Id.Id] with Comonad[scalaz.Id.Id] with Distributive[scalaz.Id.Id] with Zip[scalaz.Id.Id] with Unzip[scalaz.Id.Id] with Align[scalaz.Id.Id] with Cozip[scalaz.Id.Id]

    Permalink
  7. package syntax

    Permalink

Deprecated Value Members

  1. val Cojoin: Cobind.type

    Permalink
    Annotations
    @deprecated
    Deprecated

    (Since version 7.1) Cojoin has been merged into Cobind

Inherited from AnyRef

Inherited from Any

Ungrouped